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On a Dimensional Reduction Method 
II. Some Approximation-Theoretic Results* 

By M. Vogelius and I. Babuska 

Abstact. This paper is the second in a series of three that analyze a method of dimensional 
reduction. It contains some results for approximation of functions on the interval (-1, 1] 
with elements from the null-space of pN, N > 1, where P is a second-order ordinary 
differential operator. A special case of this is approximation by polynomials. 

The one-dimensional results are used as a tool to prove similar versions in several 
dimensions. These multi-dimensional results are directly related to the approximate method 
of dimensional reduction that was introduced in (13], and they lead to statements about the 
convergence properties of this approach. 

The third paper, which analyzes the adaptive aspects of the method, is forthcoming. 

1. Introduction. In a recent paper, [13], we introduced the concept of dimen- 
sionally reduced solutions to an elliptic boundary value problem. These are 
obtained by projecting (in the energy) the true solution of the boundary value 
problem in the n + 1-dimensional domain w X [-h, h] onto spaces of the form 

Vh= { E (X)+(Y/h)Kwj arbitrary) 

where {f }'j is a given set of functions on [-1, 1], (x are coordinates on w andy 
ranges over [-h, h]). For some basic ideas behind this concept, see the introduc- 
tion to [13]. In that paper the focus was on the right selection of the %j's. It was 
shown there that for a very wide class of problems the oj's should be selected such 
that 

{4}2k-1 %(pk) 

where P is a second-order differential operator intrinsic to the elliptic boundary 
value problem. 

The estimates of the error given in [13] were asymptotic in h -O0. The present 
paper, which was already announced there, treats convergence as N -s o for a 
fixed value of h. For convenience the fixed value of h is set equal to 1. 

If the bilinear form associated with the elliptic boundary value problem satisfies 
some kind of "inf-sup" condition, then it is well known that the rate of conver- 
gence is the same as the rate of approximation; cf. [1]. 

The results proven here are hence formulated as approximation-theoretic esti- 
mates, and as such have interest regardless of the concept of dimensionally reduced 
solutions. 
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The results are all concerning approximation in the L2- and Hl-norms, i.e., 
ideally suited for second-order problems. This is not crucial and similar results can 
also be obtained, e.g., for the norms 

du2 1 I12uI12dY 

q( v ||dy||v + Il{A'12ull2 dq 

introduced in [13]. (A here denotes a strictly positive-definite (unbounded) linear 
operator in a Hilbert space S(, and u is a function with values in SC.) 

For reasons of convenience the approximation results are formulated without 
any boundary conditions. Various types of fixed boundary conditions can im- 
mediately be included based on the present proofs. 

Estimates of the error introduced by dimensional reduction, as N goes to so, do 
exist in the literature; cf. [5], [7]. The problems considered in those two papers 
come from structural mechanics. The elliptic operators have constant coefficients, 
i.e., the oj's are polynomials. The results are not nearly as strong as the ones 
established here. In [7] the estimates are based on the degree of regularity in 
Ck-spaces; this is not very well suited to the regularity properties of solutions to 
elliptic boundary value problems and therefore gives crude estimates. The estimates 
in [5] are based on bounding the remainder in the Nth order Taylor expansion. The 
estimates are very crude and do not give any indication of the rate of convergence. 

We now give a short review of the contents of this paper. In Section 2 it is shown 
that the set U k, I 97(pk) ('L denotes the null-space) is dense in H1 for any 
second-order operator P = (bd/dy)ad/dy, where both a and b are bounded from 
above and away from 0. This is the obvious generalization of the fact that the 
polynomials are dense in H1, and it also justifies the claim that the dimensionally 
reduced solutions introduced in [13] will get arbitrarily close to the true solution. In 
Section 3 the rate of approximation, using functions in 6L(PN), N > 1, is linked to 
the regularity of u in spaces of the type 6P (Pm). This general result though is not 
always optimal, as shown, e.g., by Theorem 4.1. Section 4 is devoted to giving a 
necessary and sufficient condition for a certain rate of approximation by polynomi- 
als (i.e., the case where the operator P is a constant-coefficient operator). In 
Section 5 this is carried over to results in several dimensions-directly relating to the 
concept of dimensional reduction. The example treated in Section 6 is of the same 
type as the numerical examples in [13]. Finally the appendix contains the proofs of 
several results about the eigenvalues and eigenfunctions for two-point boundary 
value problems, as used in Sections 2 and 3. 

Note: Unless otherwise stated, all constants denoted by capital letters are 
generic. 

2. A Density Result. Let a and b be two functions in L ?([-1, 1]) such that 3 
constants ao, bo with 

0 < aO < a(y), 0 < bo < b(y). 

By P we denote the differential operator 

d d 
b d a d. bA)A 
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P is considered as a mapping L2([- 1, 1]) D 6D(P) -> L2([- 1, 1]). 97 (pk) denotes 
the null-space of the operator pk for any integer k > 1. It is easily seen that 
Gy (pk) C H([ - 1, 1]). The first theorem in this section proves the density of the 
collection of all null spaces associated with the operator P. 

THEOREM 2.1. Uk-1 97 (pk) is dense in H'([-1, 1]). 

Proof. By a change of variables, y' = fy I(l/b(s)) ds, and multiplication by -1, 
the operator P transforms into 

d a d 

dy' b dy' 

We can therefore, for the proof of this theorem, assume that P is given by 
- (d/dy)a(y)d/dy, where a satisfies: 3 a constant ao with 0 < aO < a(y). 

Define the operator Q by 6D (Q) = 6D(P) n H'([-1, 1]) and Q = P on 6((Q). 
Letfo denote the function 

=oy Lias ds E %ZY(P), I a a(s) 
and define the sequence (fiJ}) by 

fi = Q -fo E %(pi+1) 

0 < Xo < XI < . . . < Am < Xm+ I ... denote the eigenvalues of Q (repeated 
according to multiplicity). Let { um}mO be an orthonormal basis of eigenfunctions, 

um corresponding to Xm. fo can then be expanded as 
00 

fo = amu,' 
m=O 

and with this notation 
00 

fi E amXum m=O 

We now proceed to prove that any eigenfunction um can be approximated from 
within U k?? 6X(pk). The proof is by induction in m, and we start with m = 0. For 
any i > 1, we have that 

j|uO - a< CII Q I2 ( - a& ')|I 2 
00 00 

- CAo E (a1/a0)2(XO/Xj)2i 
- 

IC( o/2)(Xj/Xj)2iI 2 
j=l j=1 

where we have used Lemma A.3 to guarantee that a0 o 0. Since Ej'- 1 a]2 < so and, 
by Lemma A.1, X0/X1 < 1, this shows that 

a - 'Aofi -->uo as i --> o, in H ([- 19 1]), 

or 

00 

uoE U %(p k) 
k=1 

(denotes the closure in H 1). 
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Now assume it has been proven for some m > 1 that 
00 

{ 
M 

j}1 C U %(Pk). 

From Lemma A.3 we know that am 0, and hence for any i > 1, 
00 

UM - am'XAJi= xm,i- (aj/m)(Xm/Xj)'Uj 
j=m+l 

where 

m-1 00 

Xm, i = - (a/m)(X,/Xj)'uj E U 6X(pk) 
j=0 k=1 

due to the induction hypothesis. As before the H '-norm of the sum 
00 

E (aj/am)(Xm/AXj)'uj 
j=m+1 

can be estimated by 

C(V/X /am)(<m/Xm+)-/( at) 

Because of the facts that (j m+I a)"2 j so and, by Lemma A.1, Am/AX,+i < I 
this shows that 

Xm i + am- A%fi ->um as oo, 

in H'([- 1, 1]), i.e., 
00 

{ Uj}mc U %(pk) 
k= 1 

This finishes the induction proof, and we conclude that 
00 

{Uj) C U G,(pk). 
k = 1 

From the definition of Q, it immediately follows that 6P (Q 1/2) - Ho([ - 1, 1]), and, 
since { uj}) o is complete in 6P (Q 1/2), this proves that 

00 

HI([ -1, I]) c- 
O 

(P) 
k=1 

Now, if u E H'([-1, 1]), we shall, by choosing c = u(-1) and d= 

(u(I) - u(- 1))/f1 1 a(- s() ds, obtain that u - c - dfo C Ho ([- 1, 1]). 
Since 1, fo EC 'LX(P), we see, by a combination of this and the previously proven 

inclusion, that 
00 

H ([[ - 1,1 ]) U %(pk) LI 
k= 1 

Based on Theorem 2.1 we can easily prove a result concerning the dimensionally 
reduced solutions as introduced in [13]. This result guarantees the fulfilment of the 
goal stating that the dimensionally reduced solutions shall be able to get arbitrarily 
close to the true solution. 

Let X, denote a domain in Rn with a Lipschitz boundary. 
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THEOREM 2.2. The set 

Ew;(X;(Y) J E N, wj E H (w) and 41j EU %(Pk)for O < j } J 
i=? k=1 

is dense in H'(w X [- 1, 1]). 

Proof. Follows immediately from Theorem 2.1 and the fact that 

E wj(x)vj(y) J E- N, wj GE H'(w) and vj GE H'Q - 1, I1]) for 0 < j < J 
j=0 

isdenseinH'(wX[-1,1]). E] 

3. Estimates of the Rate of Approximation. In the previous section we proved the 
density of a certain class of functions associated with the operator P = 

b(d/dy)(ad/dy). In this section we shall prove some results concerning the rate of 
approximation. The first theorem is the following. 

THEOREM 3.1. Assume that a, b E C2([- 1, 1]), and let m be an integer > 0. For 
any e > 0, there exists a constant Ce such that 

inf IIU - VIIL2 < CeN-r+eIIuII(D(P-) VN > 1. 
V E- (PN) 

Note. 11 * II6D(p) denotes the norm IIPm(.)IIL2 +11 IIL2. 
One can of course combine the statement in Theorem 3.1 with interpolation by the 
K-method; cf. [4]. This way it follows that, if u E (L2, 6D (Pm))s for some 
0<s < 1,thenforanye >0 

inf IIu - VIIL2 < CeN ||+L2 SP)x 
V E %(pN) 

The smoothness requirement that a, b E C2([ - 1, 1]) is not necessary; as it 
immediately will follow from this proof we only need that a/b is a C2-function. 
This last remark applies to all of the results in this section. 

In order to prove Theorem 3.1, we need an auxiliary result concerning uniform 
approximation by polynomials. This result can be found, e.g., in Chapter 6 of [6]. 

LEMMA 3.1. Let + be a function in CO([c, d]). Define 
' 

by 

+()= + 2 cos t + 2 ) t E[0, 7]. 

Let r be a nonnegative integer. There exists a constant Cr such that for any 0 with 
Ck E Cr([O, 7T]) the following estimate holds 

inf < -PNIo < Cr(N + 1)rl-Ir VN > 0. 
PN 

PI r 

The infimum here is taken over all polynomials pN of degree < N. I * Io and I * Ir 
denote the norms in C?([c, d]) and Cr([O, Dr]), respectively. 

We now continue with 
Proof of Theorem 3.1. Like in the proof of Theorem 2.1 we may also here assume 

that P is given by 

d d 
P d a(y) d 

dy. dy. 
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Let fi, i > 0, be defined as in that same proof. For any set of coefficients {ci} -0, 
we have, using Lemma A.3, that 

N 00 N 

u- c. f>i aj 8 / aj - E c Xyi U>, 
i=O j=O i=o 

where Ej f301juj is the expansion corresponding to u. If by PN we denote the 
polynomialpNv(x) = I v cix', then the above can be rewritten as 

N 00 

u- c= C aj(jl/aj-pN(Xj-'))Uj, 
i=O j=O 

and this leads to the equality 

N 2 0 

(1) || u ~ j5 - E Cifi = z a2 j/aj 
- pN(X;1))2 

i=O L2 }=0 

As in the proof of Theorem 2.1, Q denotes the restriction of P to 6D (P) n 
H([- 1, 1]). Let us now for a while assume that u E 6D(Qk). 

Choose A so that (6-- ) '} 5 [0, A]. Define a sequence of functions OM E 

C ??([O, A]), 1 < M, with the following properties 

OM(lj l) 
= 

,8j/laj, 0 < j <M - 1, 

OM(x) = 0 on [ 0, XM ]. 
Let 0 denote the mapping 

(t)= (1 - cos t): [0 ] [?0, A] 

It then follows, from Lemma A. 1 and Lemma A.2, that 

- I - l( L) > C/j2 for anyj > 1. 

This estimate tells us that it is possible to construct the (A's such that VM > 1, 

kM('( t))I|r < Cr sup |(1 + 1)2r13/ajl. 
O<j<M-I 

Now, since u E 6D(Qk), we know that Ifi8l < Ck(j + I)2kIIQkuIIL2, and, combin- 
ing this with Lemma A.4, we get 

i jlaji C<k(j + 1)|2k+1 QkuIIL2, 

i.e., we have, for any r > k and M > 1, 

kMQ (?(t)) |?< C M2(r-k)+ 111 Qk 

Because of Lemma 3.1, we can now, for any r > k, M > 1, find a polynomial 
p,M of degree < N such that 

loM - plo< Cr(N + 1)rM2(r-k)+lQ I2. 

We now go back to estimate the right-hand side of (1) 
00 M-1 00 
E a2( /K/_a PNM(A ,))2 2((M _ PM)(X-ij))2 + 2 z /2 

j=0 j=0 j-M 

+2E af2((OM _ PVA)(~_)f71) + 2 j N 
i= M 
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The first and the third sum can be estimated by 

Cr(N + 1)-2rM4(r-k)+2 a2 )IQkuII12 s C,(N + l)f2rM4(r-k)+2jIQkuII2 
j=Q 

the second by 
00 

Ck : (j + I)-4kilQkuI12L2 < CkM-4k+l|QkUl12. 
j=M 

In summary we have therefore proven 

N 2 

U | E cj| < Cr((N + 1)-2rM4(r-k)+2 + M-4k+l) IQkuI2I 
i=O L2 

for any r > k, N > O and M > 1. TakingM= [M W] + 1 (I[- denotes the integer 
part), this estimate gives 

N2 

(2) u - E cjf < Ck(N + l)-2k+1IQkUII22 
i=O L2 

all provided that u E 6D (Qk). Let IIN denote the L2-projection onto linear combi- 
nations of the functions fo, ... N. 

(2) expresses that 

IIU - JINUIIL2 S CJ(N + I)k+1/21 QkUIL 2, 

and at the same time it is clear that Ilu - IHNUIL2 S II 1.2. Applying interpolation 
by the K-method, we get, for any 0 < m S k, 

IIU - HNUIIL2 < Ck(N + l) (k 1/2)m/kjIQmUjI1L2. 

Now let m be fixed and k -- oo. From the previous inequality, we then get Ve > 0 
3Ce such that 

(3) | | u - TNUIIL2 < Ce(N + 1) || Qt||L2 
provided u E 6D (Qm). If we only know that u E 6iD(Pm), then choose {g1}.m.1 c 
%(Pm) such that 

Pi- g 
= Pi- 'u fory = 1 

P'j=O fory= 1, 

and any i #j - 1, (this is obviously possible). This way 
m m 

(4) u g- E gj 6 (Qm) and 2 gj E %(Pm). 
j=1 j=1 

From (3) and (4) it now follows that 

|u -]IN U gj4 E gj| 
jl j=l L2 

U- g1)1 = Ce(N +)+ejjPmUjIL2. 
?Ce(N + 1)-m+e Qmll 1.g 2 

C + 1 

Since the image under HN is contained in %(pN+1), this estimate yields the 
desired result for N > m. There are only a finite number of N's < m, and hence 
the result can be obtained for all N by possibly increasing Ce, E 
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Based on Theorem 3.1, we can prove the following result concerning approxima- 
tion in the H '-norm. 

THEOREM 3.2. Assume that a, b E C2([- 1, 1]), and let m be an integer > 1. For 
any E > 0, there exists a constant C, such that 

inf jIU - VIIHI < CeN |+l+`IuII&D(pm) VN > 1. 
V E =D7(PN') 

Proof. From Theorem 3.1 it follows that there exist v3N E Y(pN) such that 

IIPu - VNII|L2 < CeN I++eIIUIIE(p). 

Now choose VN E 9( (pN+1) with PvN = VN, and such that VN = u fory = ?1. It 
then follows that 

IIU - VNIIHJ < CIIPu - PVNIIL2 = CIIPU - VNIIL2 ? CeN-m+l+IuI6D(p,). LI 

We can also easily prove a result relating to the dimensionally reduced solutions 
as introduced in [13]. Let X c R' be a domain with a Lipschitz boundary. 
x = (xl, . .. , xJ) denotes coordinates in w and y ranges over [- 1, 1]. P denotes 
b(y)(a/ay)(a(y)a/ay) considered as an operator L2. x [-1, 1]) D 6D (P) 
L2(WXt [-1, 1]). 

THEOREM 3.3. Assume that a, b E C2([_ 1, I]) and let m be an integer > 1. Let u 
be an element of L2Qo x [-1, 1]) with au/axl,..., au/ax,,, u E 6D (Pm). Then, for 
any e > 0, there exist C. (independent of u) such that 

inf ||U -VllH'(x[- 11) < Ce(N + 1)+ (+e ||Yax +I|I|I16D(Jh)) 
v E VN \i1 i 

164(Jm) 

Here VN denotes the set {XJ.= 0 wj(x)O(y)Iwj E H 1(w)}, where {4 }j is such that 

_i 
}2k-1 is a basis for G((p) C H'([-l, 1]). 

Proof. Let VN denote the orthogonal projection of Pu onto 

I w1(x)+>(y) wj E L2(w) } 

in the L2(W X [- 1, 1]) inner product. Then it is clear that avN/axi is the L2 
projection of P(a/axi)u onto the same subspace. From Theorem 3.1, we im- 
mediately get 

2 JP-a-(U VN-)) +IIP(U - VN)IIL2(WX[_1 11) 
i= 1 Xi L2(Wx [-1,1I) 

< C(N + 1)_m+l+e( E | +IIUIll6D(P--) 
6D(P"') 

for any function VN E VE 3 with PvN = VN (if N is odd such a vN will be 
contained in VN+2, but this is not necessarily so for N even). Now, choosing vN so 
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that also vN = u for y = + 1 (this is obviously possible), it follows that 

n~~~~~ E 11yaa (u - Vy)|| +11 aa (u - v)| +IIu - VNIIL2(s, [.1 1]) 
i= I i ~~L2(wX(-1, 1]) YL2(wX(-I, 1J) 

A c(? |P-a-( (- vN)l -IINu - vN)IIL2(WX[1 1X1)) 
i =1 

i 
L2(to X -1, 1]) 

< Ce (N + 1)_+e 
a E || ax U| + 1@it) 6D 

4. The Constant Coefficient Case-One-Dimensional Results. The following two 
sections are devoted to the case where the operator P has constant coefficients. In 
the previous section we estimated the rate of approximation for general P's, but the 
estimates established there do not have exact inverse counterparts nor are they 
always optimal. As will be shown in this section and the next, the question of 
approximation rate can be much further clarified when P is a constant coefficient 
operator. We start with an analysis of the one-dimensional problem. The space 
9L(pk), k > 1, consists simply of all polynomials of degree < 2k - 1. Theorem 3.1 
combined with interpolation says that, if u E Ht([ - 1, ]), then there exist poly- 
nomials PN, of degree N, such that jju - PNIIL2 < Ce(N + l)-f/2+e. Under the 
present simplified circumstances we can prove a better result. In the formulation of 
this result we use the Besov spaces B, 0O, t > 0; cf. [4], instead of the ordinary 
Sobolev spaces Ht. For an interpretation in terms of the spaces Ht use the 
inclusions Ht C B2 _ C Ht` valid for any t > 0, e > 0. 

THEOREM 4. 1. Let t be a given positive number. There exists a constant Ct such that 
for any u E B2 C4,[-1, 1]) one can find a sequence of polynomials {pN) 0, the 
degree of pN < N, with 

IIu - PNIIL2 < Ct(N + 1) |iluUBl . 

Note. A. similar theorem is also valid for the H l-norm. The estimate here 
becomes (for t > 1) 

jju - PNIIHI < Ct(N + 1)t+ IIUIIB2. 

The rate of approximation established in Theorem 4.1 is optimal in the following 
sense. 

THEOREM 4.2. If u E L2([ - 1, 1]) and there exist a constant C and a sequence of 
polynomials {(pN)N= the degree of PN < N, such that 

IIu - PNIIL2 C(N + 1) t for some t > 0, 

then u E (B t, J10c n Bt/2 X. 

Note. Theorem 4.2 is not an exact inverse of Theorem 4.1 since it only guarantees 
that u E BL/2([ -1, 1]). But based on Theorem 4.2 we conclude that for a general 
type function in B2 0([-1, 1]) we cannot expect more than an approximation rate 
of(N+ )-t. 

Theorem 4.2 is optimal in that one can find u such that IIU - PNII < 
CE(N + l)'- and u e Bt/2+, u e (B2t+ e),, for any c > 0; cf. [12]. 
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The proof of Theorem 4.1 is very simple, based on transforming u into a periodic 
function and estimating the remainder of the kth order Fourier expansion. Details 
can be found, e.g., in [2]. 

The proof of Theorem 4.2 is not quite as simple. The cornerstone is the so-called 
Bernstein's inequality 

a() L2 CN2IIPNIIL2, 

valid for any polynomial of degree < N. For more details see [2] or [10]. 
As already noted, Theorem 4.2, although optimal, is not an exact inverse of 

Theorem 4.1. This can be taken as evidence that the standard Sobolev or Besov 
spaces are not very good for expressing the kind of regularity needed for a certain 
rate of approximation by polynomials. They do not take into account the well- 
known fact, already noted by Timan (cf. [9]), that the polynomials have a certain 
ability to absorb singularities at the endpoints of an interval. 

Let e denote the operator - (d/dy)((l - y2)d/dy) with a domain of definition 

6De(e) = {u E L2([-1, 1])IfEu E L2([-1, i])}. 

Now introduce the Besov spaces SC ', t > 0, by 

Ct = ((f&p), D(fY)), o, 
where p, q are two integers with 0 < p < t < q, and 0 < s < 1 is selected so that 
p(l - s) + qs = t. Because of Theorem 14.1 in [8], which says that 
(6D ( k) 6D(e'))0,2 = 6(ek(1-0)+lO), and the reiteration theorem on p. 50 of [4], it 
follows that modulo equivalent norms SC t is independent of the choice of p and q. 

We are now in a position to characterize completely the regularity needed for a 
certain order of approximation by polynomials. 

THEOREM 4.3. Let t be a positive number. For any u E SC ', we can find a sequence 
of polynomials {PN 3 N?0 the degree Of PN < N, such that 

||U - PNIIL2 ? (N + 1)2t IIuxt 
On the other hand, if u E L 2([1, 1]) and there exists a constant Cu and a 

sequence of polynomials { PN})=O0 the degree of PN < N, such that 

| U - PNII L2 < CU(N + 1) 

then u E- X t and 
t|UIubct < C(Cu + IIUIIL2) 

for some constant C independent of u. 
Note. Cu here is not generic, it is the same constant in the two inequalities. 
Proof. We start by proving the direct part. It is well known that the eigenfunc- 

tions of e are the Legendre polynomials { lk)k 0. Also 

(lk) = k(k + 1)/k. 

Let now u be an element of 6D (fP), and let E ? -0 am/ln be the Legendre series for u. 
Since u E 6D (6P), we know that 2 amm4P < IIuII). Define p = Nm0 amlm, 
then 

00 00 

u - PNI1L2 = 2 am < (N + 1)-4P , amm4P < (N + 1)4IIUII2(eP), 
m=N+l m=N+l 
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i.e., l u-PN!IIL2 < (N + 1)-2P II Ull 6D(P). Interpolation applied to this gives the de- 
sired result. 

We now turn to the inverse. Assume that there exist polynomials PN of degree 
< N such that 

|U - PNIIL2 < CU(N + 1)2t. 

Definero = p,, rm = P2' - P2`-" m > 1. Then 

lIrOIlL2 < Cu +jjUjj|L2, 

and 

lIrmIlL2 < Iju - P2"11L2 + IIu - P2`-lItL2 < C< * Cu22tm, m > 1. 

Since EPnj IIL2 < Cn2j pi,n IIL2 for any polynomial p,n of degree < n, it follows from 
above that for any nonnegative integer q 

11qrOllL?2 < Cq(Cu + 11U11L2) 

and 

I|I| qrm I L2 S Cq 
- 

Ct 
- 

Cu 
- 22(q )m m >1. 

Now define vk = -0 rm. We then get 
k 

IIVkIL6D(ej) < 2 (j||Yrm||L2 + || rmI IL2) 
m=O 

< Cq, t(Cu +||U||L2 + CU 2 22(t)m 

< Cq, t22(q -I)k( (Cu+ || U11L2) 

provided q > t. At the same time 

||u - VkIIL2 = |jU - P2kIIL2 < Cu2 

By defining Sk = 2 2kq, we therefore have 

Sk /q(||U - VkIIL2 + SkjjVkjj6(pq)) < Cq,t(Cu + IIUIIL2)l 

and, since Sk ->0 for k x-> , this proves that 

u C (L2, D (Iq))t/q, = Xt 

with Ilulle < Cq,t(Cu + IIUIIL2). El 
This theorem also allows a version formulated by using the spaces 6I (et) instead 

of the corresponding Besov spaces. It is derived from the inclusions D (ft) C SC t 

c GD(f>-') valid for any t > 0, e > 0. 
A theorem similar to Theorem 4.3 but concerning approximation in the H 1 norm 

can be derived immediately based on Theorem 4.3. 
For practical purposes, in determining the rate of approximation, the following 

characterization of 6D (fq) (cf. [3]) will often be convenient: 

D (fY) = { u E L2( [-1, 1 ]) I u E Hq([_1, 1 ]), (1 _ Y2)qU E H2 _([ 1, 1])> 

Let us now give one simple example that shows how a result similar to Theorem 
4.3 can be established also in a case with a nonconstant coefficient. 
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Example 4.1. Let P denote the operator a -'(d/l4a)(ad/l4'), where the function a 
is given by 

( a+ fory > 0, 
a- fory <0, 

with a + and a being two positive constants. (This is the operator arising in the 
numerical examples of [131.) 

It is not difficult to see that the following set of functions is a basis for 7X(Pt): 

ko=l, P1 a(y)Y Y 2k S 12k- I(t) dt, 

02k+1 12k@) dt, 1 <k <N-1. 

Here Ik denotes the Legendre polynomial of order k. Performing the Gram- 
Schmidt orthogonalization on the set 40, 41, . - - I 2N-21 42N-1 (in that sequence), 
in the inner-product <u, V>a = f1 I u(y)v(y)a(y) dy, we end up with a new set of 
functions 'o, 4j .... * *2PN-2~ 412N- 1 4'k is a piecewise polynomial of degree k. Let 

Ea denote the operator 

-a -'(y) d a(y)(l_ y2) d- 

It is then clear that 
k 

P-a 42k = E 2? j, k 2j, 0 < k < N - 1, 
j=o 

k 

EaO2k-l = E ?>,k4'2-l, 1 k < N. 
j=1 

Now we have, because of the orthogonality of the 4'k's and the fact that f&a is 

selfadjoint in L2([ - 1, 1], a(y) dy), 

Keaa4'k, Oj>a = K4k' Pa4>a = 0 forj < k, 
i.e., Ea 4'k = Xk4'k for any k. It immediately follows that Xk = k(k + 1). 

It also follows, since {4'k})'O is dense in L2([ - 1, 1]), that {AXk, 4'k} O is a 
complete set of eigenvalues and eigenfunctions for Ea. 

As in the proof of Theorem 4.3, we now get that 

inf Nj - UV1L2 ? CN -2t 

VEGX(PN) 

u E- (6D(6P-a aA)), 00 

for any 0 < p < t < q, and 0 < s < 1 chosen such that t = p(l - s) + qs. In 
summary, we have found a singular operator ia that characterizes the rate of 
approximation with functions in 6X(PN) the same way that the Legendre operator 
does with polynomials. 

5. The Constant Coefficient Case-Dimensions Higher Than 1. In this section we 
prove a result relating to the dimensionally reduced solutions introduced in [13]. 
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We give a characterization of the regularity needed for a certain rate of approxima- 
tion. The approximating functions are of the form X> 0 wj(x)p1(y), where wj C 

H '(w) and pj is a polynomial of degree j, i.e., the operator P has constant 
coefficients. w as before denotes a domain in R' with a Lipschitz boundary and y 
ranges over [- 1, 1]. 

In the proof of the main result in this section the following lemma will be very 
useful. 

LEMMA 5.1. Let H1 C Ho be two Banach spaces with norms 11 * 11, and 11 * 11o, 
respectively 

Let { VN}NO be an increasing sequence of subspaces of H1, and let ,B be a positive 
number. We assume that the following implication holds 

u C Ho and inf ||u-qllo < Cu(N + 1)1" VN > 0 
q e VN 

u C H1 and 11 ull? S C(Cu + Iullo) 

for some C independent of u. (Cu here is not generic, it is the same constant in the two 
inequalities.) 

As a result of this, it follows that, for any 0 < 0 < 1, 

uEHo and inf ||u-qjjo<Cu(N + 1)0'6 VN >0 
q e VN 

u E (HO, H1), and IuIIo,OO < C(Cu + jjullo) 

for some C independent of u. (As before Cu is not generic.) 

Proof. Let 0 < 0 < 1, and assume that there exists a sequence of elements 

qN C VN, N > 0, such that IIu - qNIIO S Cu(N + 1)-9.Define 

ro =- q 1 rm = q2M q2m -1 m > 1 
then 

k 

U - rm =j|u - 
q2kil0 < Cu2k. 

m=O 0 

At the same time 

11 roIlo < Cu + 11ullo, 

and 

IIrmIlo < Iju q2mllO + ItU - q2m-1I1 < C,9fiCU22 , m > 1. 

That is, rm C V2m, m > 1, and 

112m0( 1)rmIlo < CA0,,(Cu + jlullo)2-m1. 
From the first implication in the statement of this theorem, it follows that 

I2 ( 1)rmII1 1 CH,f ( CU + IjIuIo + 112m (9 -)rmllo) 
or 

IIrmIil s Co"O(Cu + IIullo) * 2m(l 
- 

). 
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We therefore get 
k k 

| rm < E |Irml < CH (CU + IIullo) - 2ki(1- H). 
mO 1 m=O 

If we define Sk = 2-kf the following inequality now holds 

uk Smk 0 m < Ce (Cu + 1Ullo)- 

Since Sk -?0 for k oo, this proves that 

u E (HO, H1)0, , with II ullI o,0 C< 0,(Cu + II uII0) E] 

Let us introduce the spaces 

i;R = U C= 6() aaU E 6D(?), i = I,... } 

f here denotes-(a /ay)((l - y2)a/ay) considered as an operator L2(w X [- 1, 1]) 
: 6D ( 2) - L2(w [-1, 1]), and R is a nonnegative integer. 

VN denotes the space {Xj=O wj(x)pj(y) I wj E H'(w)}, wherepj is a polynomial of 
degree j, j > 0. We are then able to give the following characterization of 
approximation by the spaces VN in the H 1-norm. 

THEOREM 5.1. Let a be a given positive number. If 

u~~~~ ( x[1, 1]), XR)a/R, 0o 

for some integer R > a and R > 2a/e, where c is a positive number, then there 
exists a constant C such that 

inf IIu - qIIHl(wXx[-1,1]) < C(N + 1)2a+e VN > 0. 
q E VN 

On the other hand, if for some e > 0 there exists a constant C such that 

in Iu - qiiHl(wX[-, I]) C(N + 1)2ae VN > 0, 

then 

u E- n (H(Q X [-1, 1 ])fjR)/R, . 
R EN, R >a 

Before we proceed with the proof of Theorem 5.1, let us state a corollary that 
immediately follows from this theorem. 

Modulo E this is the equivalent of Theorem 4.3 in more than one dimension. 

COROLLARY 5.1. Let a be a given positive integer. If 

u E- n (H 1(w x -1, 1'I)' 
R 

),IR ool 
R EN,R >a 

then for any E > 0 there exists a constant Ce such that 

iflf 1u - 
qjjHl(.x[-1, 1]) < C8(N + 1)-2a+e N > 0. 

q E- VN 

On the other hand, if for some E > 0 there exists a constant C such that 

inf 1tu - 
qjjH'( X[-1, 1]) < C(N + 1)-2a -e VbN 0, 

qE- VN 
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then 

u E n (H(w X [-1 1 ]) R) a/R, c 
R EN,R >a 

Proof of Theorem 5.1. Assume that u E 7JR and R is an integer > 1. Let VN 

denote the orthogonal projection of fu onto {X%v wj(x)p1(y) I wj E L2(w)} in the 
L2(W x [- 1, 1]) inner product. Then it is clear that avN/axi is the L2-projection of 

E(a/axj)u onto the same subspace. From Theorem 4.3, we immediately get 

E || a (U - vN) + If(u - vN)IL2(WX[1 11]) 
L2(WX[-1, 1]) 

< CR(N + 1)2(2R U | I U|I + (ER)) 

for any function vN E VN with fvN& = VN. Now, choosing vN so that also 
jf I vN(x, y) dy = jf u(x, y) dy for any x E t (this is obviously possible), it fol- 
lows that 

n aa 
E 11 a (U - 

VNa) ++ | Uaa[VN (U -VN 
i=1 xi _L2(WX[-1, 1]) Y L2(WX[-1, 1]) 

< c (U - VN) 2 +IE(U - VN ) L2(W X ) 

< CR(N + 1)22R( u ||a + 11u116D(eR)) = CRN 2RIIUll9CR 

Using interpolation on this result, we get that 

qiff 11u - qjjH1(wX[-1,1]) < CR(N + 1)-2a+2a/R IIIUI1IR,1 

where IIIU111a/R,. denotes the norm on (H1(w x [-1, 1]), YUCR)a/R ,. Since 2a/e < 
R, i.e. 2a/R < c, the direct part of this theorem immediately follows. 

Let us now give a proof of the second part of the theorem. If 

inff 1- qjjH1(,X[-1, 1]) < C(N + 1)-2R-Re/a q E- VN 

for some R > a, then, as in the proof of Theorem 4.3, it easily follows that 

u E 6(fR) and au E (e) ax, 

i.e., u E %CR. If we apply Lemma 5.1 with H1 = NCJR Ho = H(wX [- 1, 1]) and 
9 = a/R, we then get that 

in ju - 
qjH'(wx,-1, 1]) < C(N + 1) 2a-e q E- VN 

implies u E (H'(w [- 1, 1]), X7KR)a/R , for any integer R > a, i.e., 

u E n (Hl(wX [1 1])f%R)a/R, so[ 

R E N, R >a 

For the conclusion of this section let us give a simple example that shows the 
practical usefulness of Theorem 5.1 (or Corollary 5.1). 



62 M. VOGELIUS AND I. BABU?KA 

Example 5.1. Let w be the interval [0, 1]. Let y be a positive number and let (r, 9) 
denote polar coordinates around the point (1, 1). We then consider functions of the 
type u = r'y(9), where 4 is an element of C ?([O, vr/21). 

It is not difficult to prove that 

u E n (H 1((, x -1, 1 I)' SCR),IR 00 

R EN, R >T 

for 0 < T < y, and that, for a general choice of q, this is not so for any T > Y (if 
y 4 N, then this is not so for any 4 and T > y except 4 = 0). By an application of 
Corollary 5.1, we therefore get that 

inf jju - qjjH'(wX[-I,1]) < Ce(N + 1)-2y VN > 0, 
qE VN 

for any e > 0, and at the same time that, for a general choice of 4 (or for any 
4 # 0 in the case -y 4 N), there exist no e > 0 and C, such that 

inf IIU - qJH'(wX[-1, 1]) < Ce(N + 1)-2y-e VN > 0. 
q GE VN 

A function of the type rT4y(9) is a typical example of a corner-singularity as 
arising from the solution of an elliptic boundary value problem. 

Theorem 5.1 (or Corollary 5.1) is thus well suited to predict the optimal order of 
convergence (modulo E) that one can in general expect by dimensional reduction of 
elliptic boundary value problems. 

A result like this could not have been obtained by using the a priori knowledge 
of the regularity of solutions to elliptic boundary value problems in terms of 
standard Sobolev spaces. 

6. A Simple Example of Dimensional Reduction. Let us consider the boundary 
value problem 

l\u = O in JO, q x ]-I, q, 

u = 0 forx = 0, 1, 

aU = g(x) fory = + 1, 

(n is the outward normal). 
From [13] it follows that the optimal choice of basis functions for dimensional 

reduction in this case is the polynomials. VN denotes the set 

I Wj(Wpj(y) I Wj E HI ([O I]) ) 

wherepj is a polynomial of degreej. 
Let UN denote the projection of u onto VN in the inner-product 

B(4),4i) =ialp--+--I4vdydx. )=JO T1(ay ay ax ax ) 
It is clear that 

inf flU - q<jH'([O IJX[-l, 11) < B(u - UN, U - UN) 

q E VN 

< C inf 11 U- qIH'([O, 11X- 1, 1]), 

q E V.N 
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and hence that the energy error B(u - UN, U - UN) is asymptotically in N equiva- 
lent to the square of the distance (in H 1) from u to VN. 

If g has the Fourier series 
00 

g(x) = gk sin kiTx, 
k= 1 

then it immediately follows that u is given by 

C*cosh(kvy) gk_ 

U(X' Y) - 1 sinh(kT) ki nkTx. 

In terms of regularity of u, it is not difficult to prove that this formula leads to the 
following three results: 

00 

(i) Va > 0: E gk2k2a < XI ? u E H3/2+a([0, 1] x[-1, 1]), 
k= 1 

Va > 0: 

(ii) 00 U22a < oO i u E ( H([o, 1] x[ 1, ]) $( R,) 
g~k2 <k = R EN, R>0 

k=1 witho= a + 1/2, 

Va > 0, c > 0: 

(iii) u E nq (H ([o, I] X[- 1, ]), 
9CR)O/RO o 

0 
2 < 00. 

with O = a + 1/2 + k=1 

We consider two different choices for g 

g(x) = 7T/4, g(x) = x(x - 1). 

For the first choice of g it follows that 
00 00 

E gk2k9 < oo forany O < 1/2, and E gkk = oo, 
k=1 k=1 

and, similarly, for the second choice 
00 00 

2 gk2k2 < 00 for any a < 5/2, and 2 gkk = oo. 
k=1 k=1 

Corollary 5.1 together with the regularity results (ii) and (iii) now ensure that 
In the case g(x) = 7T/4 

B(u - UN, U - UN) will converge to zero faster than N-4+,, Vc > 0, 

but on the other hand slower than N -4-e, V > 0. 

In the case g(x) = x(x - 1) 

B(U - UN, u - UN) will converge to zero faster than N-12 +, Vc_ > 0, 

but on the other hand slower than N -12-e, Vc > 0. 

Figures 1 and 2 show the actual computed values of B(U - UN, U - UN) as a 

function of N in the two different cases. Note that the asymptotic rate of 
convergence is obtained already for a fairly small number of polynomials. 

For details concerning the computation of the uN'q see [13]. 
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Instead of using Corollary 5.1 to obtain information about the rate of conver- 
gence, we could have used the regularity result (i) and a two-dimensional version of 
Theorem 4.1. This way we could at most have predicted convergence of the order 
of N -2+e and N -6+e, respectively, i.e., only half the actual convergence rate. 

In [13] we considered the same boundary value problem as here, only it was on 
the domain [0, 1] x [-h, h] for some h > 0, and not on [0, 1] x [-1, 1]. From the 
computational results there, it follows that, for a fixed N > 2, B(u - uN, u - uN) 
behaves like h2, h O-0, in the case where g(x) = T/4. (uh is the projection of u 
onto {V: = w-(x)pj(y/h) i wj E H ([O, 1])).) Comparing this to the result obtained 
here for g(x) = 1T/4, it is seen that using N polynomials, y E [-1, 1], is in some 
sense equivalent to having a domain of thickness 1/N2. A similar feature has been 
noticed by comparison of the standard h-version of the F.E.M. with the so-called 
p-version; cf. [2]. 

In this example we used slight variations of the approximation results proved in 
Sections 4 and 5, namely with fixed boundary conditions O0 at x = 0, 1. The 
proofs of these results follow immediately from the proofs of the similar results 
with no boundary conditions. 

Appendix. In Sections 2 and 3, we used some results concering the eigenvalues 
and eigenfunctions of the boundary value problem 

--a-u =Xu, u(-1) = u(l) = 0. 

a here is a function in L([ -1, 1]) such that 3 a constant ao with 0 < ao < a(y). 
From the theory of Sturm-Liouville systems, it immediately follows that the 
eigenvalues (repeated according to multiplicity) form a sequence: 

? < /xo 6 /XI < ... < ~m< 6 4+1 *.*.*. 
with + oo as the only limit point. 

LEMMA A. 1. With notation as above 

m # X $ms for m #i m', 

i.e., the eigenvalues are all simple. 

Proof. Assume that for some m m m', XAn = X,. This means that the eigenvalue 
X = A, (= Xm,) has multiplicity > 1. Let u and ui be two linearly independent 
eigenvectors corresponding to A, and let v = cu + dui be a nontrivial linear combi- 
nation with the property that adv/dy = 0 for y = -1 (such one obviously exists). 
The function v is then a solution to the initial-value problem 

d d 
-d a-v = Xv in[1,1] 

d 
v = a - v = 0 fory = -1, 

dy 

and, because of the uniqueness of solutions to this problem, it follows that v = 0. 
Since v is a nontrivial linear combination of u and ui, this shows that u and ui are 
linearly dependent. We therefore have arrived at a contradiction, i.e., A,,, +# A,,, for 
m i# m'. C1 
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It is well known that there exist constants 0 < C1 and 0 < C2 such that 
C1(m + 1)2 < Am < C2(m + 1)2. 

By imposing an extra smoothness requirement on a we can obtain a much more 
detailed statement. 

LEMMA A.2. If a E C2([-1, 1]), then 

A = (X/1)2* (m + 1)2 + 0(1), where 1 = f1 (a(y))-2 dy. 

A proof of Lemma A.2 is found in Chapter 4 of [11], and shall not be repeated 
here. 

Let { umr}= denote a sequence of normalized eigenfunctions, ur corresponding 
to Am. Letfo be given as in Section 2, namely 

I f-i a(s) 

LEMMA A.3. The function fo has the expansion 
00 

fo =E am um, 
m=O 

where am 7# O for every m. 

Proof. That fo has a unique expansion is well known. The coefficient am is given 
by 

Am =dS A 1 a(s) dsUm(y) dy. 

Now assume that, for some value of m = mo, amo = 0, i.e., 

JI1J1 a(s) ds Umo(Y) dy = O. 

Since 
I d d 

Umo(y) =a umo, 
Xm0dy dyo 

we get that 

f21 J12 a(s) 4- a - umo](Y) dy =0. 

Performing an integration by parts, this yields 

fJi a(s) dy[a Um]()- f 7 Udy (y) '4' = 0, 

and the last integral here vanishes due to the fact that umo(l) = umo(- 1) = 0. We 
therefore conclude that 

a dumo= umo =0 fory= 1. 

On the other hand, um0 satisfies the differential equation 

dy dy 
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Because of uniqueness of solutions to the initial-value problem, this implies that 
urn0 = 0. We have thus arrived at a contradiction, meaning that a,m 7# 0 for every m. 

E 
Again, by imposing an extra smoothness requirement on a, we obtain a very 

detailed result concerning the decay-properties of the am's. 

LEMMA A.4. If a E C2([-1, 1]), then 3 constants 0 < C1 and 0 < C2 such that 

m 1 C< a,,, m +l forall m. 

Proof. From [1 1, p. 176] we get the following asymptotic formula for um(y) 

Um(y) = Dm(a(Y)) /4[sin( (m )) - I+ T(()cos (m + )T 

+ O((m + 1) 2), 

where 

C(y) = f (a(s))'12 ds and I = t(1) = (a(s))'12 ds. 

The function T is in C 1 and the constants Dm satisfy 

3D (independent of m) such that 1/D < IDm1 < D for all m. 

Also, O( ) here means uniformly iny. Let us now calculate am: 

am = f| fo(Y)um(y) dy = f i a ds u (y) dy 

= I1 + I2 + O((m + 1)-2). 

I2 denotes the integral 

I DmuI y. a(s) ds)(a(y)) "/4Tq)cos (m + 1)7) dy 
By a change of variables from y to t and an integration by parts, it immediately 

follows that I2 is O((m + I)-2). 

I, is given as 

Dm (fI a(S) ds)(a(y)) -/4sin( (m + 1) 7T c y 

By a change of variables from y to ( and an integration by parts, we get that 

I = D" a(s 1) (a(J))a /4 + I)'. (_ I)m + O((m + I)-2). 

This immediately implies the existence of two constants 0 < C1 and 0 < C2 such 
that 

Cl 
<'Ia C2 

m + 1 S1am m + 1 

for m sufficiently large. Now combining with Lemma A.3 and possibly changing 
the constants C1 and C2, we get the desired result. 
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